Publication Type

Journal Article

Version

acceptedVersion

Publication Date

2-2009

Abstract

Web information fusion can be defined as the problem of collating and tracking information related to specific topics on the World Wide Web. Whereas most existing work on Web information fusion has focused on text-based multidocument summarization, this paper concerns the topic of image and text association, a cornerstone of cross-media Web information fusion. Specifically, we present two learning methods for discovering the underlying associations between images and texts based on small training data sets. The first method based on vague transformation measures the information similarity between the visual features and the textual features through a set of predefined domain-specific information categories. Another method uses a neural network to learn direct mapping between the visual and textual features by automatically and incrementally summarizing the associated features into a set of information templates. Despite their distinct approaches, our experimental results on a terrorist domain document set show that both methods are capable of learning associations between images and texts from a small training data set.

Keywords

Data Mining, Multimedia Data Mining, Image-Text Association Mining

Discipline

Computer Engineering | Databases and Information Systems

Research Areas

Data Science and Engineering

Publication

IEEE Transactions on Knowledge and Data Engineering

Volume

21

Issue

2

First Page

161

Last Page

177

ISSN

1041-4347

Identifier

10.1109/TKDE.2008.150

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Additional URL

https://doi.org/10.1109/TKDE.2008.150

Share

COinS