Publication Type

Journal Article

Version

acceptedVersion

Publication Date

2-2007

Abstract

Traditional text mining techniques transform free text into flat bags of words representation, which does not preserve sufficient semantics for the purpose of knowledge discovery. In this paper, we present a two-step procedure to mine generalized associations of semantic relations conveyed by the textual content of Web documents. First, RDF (resource description framework) metadata representing semantic relations are extracted from raw text using a myriad of natural language processing techniques. The relation extraction process also creates a term taxonomy in the form of a sense hierarchy inferred from WordNet. Then, a novel generalized association pattern mining algorithm (GP-Close) is applied to discover the underlying relation association patterns on RDF metadata. For pruning the large number of redundant overgeneralized patterns in relation pattern search space, the GP-Close algorithm adopts the notion of generalization closure for systematic overgeneralization reduction. The efficacy of our approach is demonstrated through empirical experiments conducted on an online database of terrorist activities.

Keywords

RDF mining, association rule mining, relation association, text mining

Discipline

Computer Engineering | Databases and Information Systems

Research Areas

Data Science and Engineering

Publication

IEEE Transactions on Knowledge and Data Engineering

Volume

19

Issue

2

First Page

164

Last Page

179

ISSN

1041-4347

Identifier

10.1109/TKDE.2007.36

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Additional URL

https://doi.org/10.1109/TKDE.2007.36

Share

COinS