Publication Type

Journal Article

Version

publishedVersion

Publication Date

6-2015

Abstract

Parallel and distributed simulations (or High-Level Architecture (HLA)-based simulations) employing optimistic synchronization allow federates to advance simulation time freely at the risk of overoptimistic executions and execution rollbacks. As a result, the simulation performance may degrade significantly due to the simulation workload imbalance among federates. In this article, we investigate the execution of parallel and distributed simulations on Cloud and data centers with Virtual Execution Environments (VEEs). In order to speed up simulation execution, an Adaptive Resource Provisioning Mechanism in Virtual Execution Environments (ArmVee) is proposed. It is composed of a performance monitor and a resource manager. The former measures federate performance transparently to the simulation application. The latter distributes available resources among federates based on the measured federate performance. Federates with different simulation workloads are thus able to advance their simulation times with comparable speeds, thus are able to avoid wasting time and resources on overoptimistic executions and execution rollbacks. ArmVee is evaluated using a real-world simulation model with various simulation workload inputs and different parameter settings. The experimental results show that ArmVee is able to speed up the simulation execution significantly. In addition, it also greatly reduces memory usage and is scalable

Discipline

Software Engineering

Research Areas

Software and Cyber-Physical Systems

Publication

ACM Transactions on Modeling and Computer Simulation

Volume

26

Issue

1

First Page

1:1

Last Page

1:25

ISSN

1049-3301

Identifier

10.1145/2717309

Publisher

Association for Computing Machinery (ACM)

Additional URL

https://doi.org/10.1145/2717309

Share

COinS