Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
4-2016
Abstract
Modern mobile devices are equipped with multiple antennas, which brings various wireless sensing applications such as accurate localization, contactless human detection and wireless human-device interaction. A key enabler for these applications is phased array signal processing, especially Angle of Arrival (AoA) estimation. However, accurate AoA estimation on commodity devices is non-trivial due to limited number of antennas and uncertain phase offsets. Previous works either rely on elaborate calibration or involve contrived human interactions. In this paper, we aim to enable practical AoA measurements on commodity off-the-shelf (COTS) mobile devices. The key insight is to involve users’ natural rotation to formulate a virtual spatial-temporal antenna array and conduce a relative incident signal of measurements at two orientations. Then by taking the differential phase, it is feasible to remove the phase offsets and derive the accurate AoA of the equivalent incoming signal, while the rotation angle can also be captured by built-in inertial sensors. On this basis, we propose Differential MUSIC (D-MUSIC), a relative form of the standard MUSIC algorithm that eliminates the unknown phase offsets and achieves accurate AoA estimation on COTS mobile devices with only one rotation. We further extend D-MUSIC to 3-D space and fortify it in multipath-rich scenarios. We prototype D-MUSIC on commodity WiFi infrastructure and evaluate it in typical indoor environments. Experimental results demonstrate a superior performance with an average AoA estimation error of 13◦ . Requiring no modifications or calibration, D-MUSIC is envisioned as a promising scheme for practical AoA estimation on COTS mobile devices.
Discipline
Digital Communications and Networking | Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Proceeding of the 35th IEEE Annual International Conference on Computer Communications, San Francisco, 2016 April 10-14
First Page
9
Last Page
9
ISBN
9781467399531
Identifier
10.1109/INFOCOM.2016.7524452
Publisher
IEEE
City or Country
San Francisco, CA, USA
Citation
QIAN, Kun; WU, Chenshu; YANG, Zheng; ZHOU, Zimu; WANG, Xu; and LIU, Yunhao.
Tuning by turning: Enabling phased array signal processing for WiFi with inertial sensors. (2016). Proceeding of the 35th IEEE Annual International Conference on Computer Communications, San Francisco, 2016 April 10-14. 9-9.
Available at: https://ink.library.smu.edu.sg/sis_research/4747
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/INFOCOM.2016.7524452