Publication Type
Journal Article
Version
publishedVersion
Publication Date
7-2018
Abstract
In literature, learning with expert advice methods usually assume that a learner always obtain the true label of every incoming training instance at the end of each trial. However, in many real-world applications, acquiring the true labels of all instances can be both costly and time consuming, especially for large-scale problems. For example, in the social media, data stream usually comes in a high speed and volume, and it is nearly impossible and highly costly to label all of the instances. In this article, we address this problem with active learning with expert advice, where the ground truth of an instance is disclosed only when it is requested by the proposed active query strategies. Our goal is to minimize the number of requests while training an online learning model without sacrificing the performance. To address this challenge, we propose a framework of active forecasters, which attempts to extend two fully supervised forecasters, Exponentially Weighted Average Forecaster and Greedy Forecaster, to tackle the task of online active learning (OAL) with expert advice. Specifically, we proposed two OAL with expert advice algorithms, named Active Exponentially Weighted Average Forecaster (AEWAF) and active greedy forecaster (AGF), by considering the difference of expert advices. To further improve the robustness of the proposed AEWAF and AGF algorithms in the noisy scenarios (where noisy experts exist), we also proposed two robust active learning with expert advice algorithms, named Robust Active Exponentially Weighted Average Forecaster and Robust Active Greedy Forecaster. We validate the efficacy of the proposed algorithms by an extensive set of experiments in both normal scenarios (where all of experts are comparably reliable) and noisy scenarios.
Keywords
Online learning, active learning, expert advice, data streaming
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing | Theory and Algorithms
Research Areas
Data Science and Engineering
Publication
ACM Transactions on Knowledge Discovery from Data
Volume
12
Issue
5
First Page
1
Last Page
22
ISSN
1556-4681
Identifier
10.1145/3201604
Publisher
Association for Computing Machinery (ACM)
Citation
HAO, Shuji; HU, Peiying; ZHAO, Peilin; HOI, Steven C. H.; and MIAO, Chunyan.
Online active learning with expert advice. (2018). ACM Transactions on Knowledge Discovery from Data. 12, (5), 1-22.
Available at: https://ink.library.smu.edu.sg/sis_research/4185
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/3201604
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons, Theory and Algorithms Commons