Publication Type

Conference Proceeding Article

Version

publishedVersion

Publication Date

2-2011

Abstract

While tuple extraction for a given relation has been an active research area, its dual problem of pattern search- to find and rank patterns in a principled way- has not been studied explicitly. In this paper, we propose and address the problem of pattern search, in addition to tuple extraction. As our objectives, we stress reusability for pattern search and scalability of tuple extraction, such that our approach can be applied to very large corpora like the Web. As the key foundation, we propose a conceptual model PRDualRank to capture the notion of precision and recall for both tuples and patterns in a principled way, leading to the "rediscovery" of the Pattern-Relation Duality- the formal quantification of the reinforcement between patterns and tuples with the metrics of precision and recall. We also develop a concrete framework for PRDualRank, guided by the principles of a perfect sampling process over a complete corpus. Finally, we evaluated our framework over the real Web. Experiments show that on all three target relations our principled approach greatly outperforms the previous state-of-the-art system in both effectiveness and efficiency. In particular, we improved optimal F-score by up to 64%.

Keywords

Algorithms, Experimentation, Design, Performance

Discipline

Databases and Information Systems

Research Areas

Data Science and Engineering

Publication

WSDM '11: Proceedings of the 4th International Conference on Web Search & Data Mining: Hong Kong, China, February 9-12

First Page

825

Last Page

834

ISBN

9781450304931

Identifier

10.1145/1935826.1935933

Publisher

ACM

City or Country

New York

Share

COinS