Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
11-2017
Abstract
Electroencephalography (EEG) signal based intent recognition has recently attracted much attention in both academia and industries, due to helping the elderly or motor-disabled people controlling smart devices to communicate with outer world. However, the utilization of EEG signals is challenged by low accuracy, arduous and time-consuming feature extraction. This paper proposes a 7-layer deep learning model to classify raw EEG signals with the aim of recognizing subjects’ intents, to avoid the time consumed in pre-processing and feature extraction. The hyper-parameters are selected by an Orthogonal Array experiment method for efficiency. Our model is applied to an open EEG dataset provided by PhysioNet and achieves the accuracy of 0.9553 on the intent recognition. The applicability of our proposed model is further demonstrated by two use cases of smart living (assisted living with robotics and home automation).
Keywords
Deep learning, EEG, Intent recognition, Smart home
Discipline
Digital Communications and Networking | OS and Networks
Publication
Proceeding of 24th International Conference on Neural Information Processing: ICONIP 2017, Guangzhou, China, November 14-18
Identifier
10.1007/978-3-319-70096-0_76
City or Country
Guangzhou, China
Citation
ZHANG, Xiang; YAO, Lina; HUANG, Chaoran; SHENG, Quan Z.; and WANG, Xianzhi.
Intent recognition in smart living through deep recurrent neural networks. (2017). Proceeding of 24th International Conference on Neural Information Processing: ICONIP 2017, Guangzhou, China, November 14-18.
Available at: https://ink.library.smu.edu.sg/sis_research/3873
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1007/978-3-319-70096-0_76