Publication Type
Journal Article
Version
publishedVersion
Publication Date
9-2017
Abstract
Trajectory data generated by outdoor activities have great potential for location based services. However, depending on the localization technique used, certain trajectory data could contain large errors. For example, the error of trajectories generated by cellular-based localization techniques is around 100m which is ten times larger than that of GPS-based trajectories. Hence, enhancing the utility of those large-error trajectories becomes a challenge. In this paper we show how to improve the quality of trajectory data having large errors. Some existing works reduce the error through hardware which requires information such as the time of arrival (TOA), received signal strength indication (RSSI), the position of cell towers, etc. Moreover, different positioning techniques will result in different hardware-based solutions and different data formats, which limit the generalizablity. Other works study a related but different problem, i.e., map matching, with the aid of road network information, to reduce the uncertainty and the noise of trajectory data. However, most of these approaches are designed for the GPS-sampled data, and hence they might not be able to achieve a similar performance when applied directly to trajectories with large errors. Motivated by this, we propose a general error reduction system namely CLSTERS for trajectories with large scale of errors. Our system is hardware independent and only requires the coordinates and the time stamp of each sample point which makes it general and ubiquitous. We present results from experiments using three real-world datasets in three different cities generated by two different localization techniques and the results show that our approach outperforms existing solutions.
Keywords
Localization, error reduction, cellular-based trajectory, map matching
Discipline
Databases and Information Systems | Software Engineering
Research Areas
Data Science and Engineering
Publication
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume
1
Issue
3
First Page
1
Last Page
28
ISSN
2474-9567
Identifier
10.1145/3130981
Publisher
Association for Computing Machinery (ACM)
Citation
WU, Hao; SUN, Weiwei; ZHENG, Baihua; YANG, Li; and ZHOU, Wei.
CLSTERS: A general system for reducing errors of trajectories under challenging localization situations. (2017). Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1, (3), 1-28.
Available at: https://ink.library.smu.edu.sg/sis_research/3869
Copyright Owner and License
Publisher
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/3130981