Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
11-2017
Abstract
Trajectory outlier detection is a fundamental building block for many location-based service (LBS) applications, with a large application base. We dedicate this paper on detecting the outliers from vehicle trajectories efficiently and effectively. In addition, we want our solution to be able to issue an alarm early when an outlier trajectory is only partially observed (i.e., the trajectory has not yet reached the destination). Most existing works study the problem on general Euclidean trajectories and require accesses to the historical trajectory database or computations on the distance metric that are very expensive. Furthermore, few of existing works consider some specific characteristics of vehicles trajectories (e.g., their movements are constrained by the underlying road networks), and majority of them require the input of complete trajectories. Motivated by this, we propose a vehicle outlier detection approach namely DB-TOD which is based on probabilistic model via modeling the driving behavior/preferences from the set of historical trajectories. We design outlier detection algorithms on both complete trajectory and partial one. Our probabilistic model-based approach makes detecting trajectory outlier extremely efficient while preserving the effectiveness, contributed by the relatively accurate model on driving behavior. We conduct comprehensive experiments using real datasets and the results justify both effectiveness and efficiency of our approach.
Keywords
Inverse reinforcement learning, trajectory data processing, outlier detection, driving behavior
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Research Areas
Data Science and Engineering
Publication
CIKM '17: Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, November 6-10
First Page
837
Last Page
846
ISBN
9781450349185
Identifier
10.1145/3132847.3132933
Publisher
ACM
City or Country
New York
Citation
WU, Hao; SUN, Weiwei; and ZHENG, Baihua.
A fast trajectory outlier detection approach via driving behavior modeling. (2017). CIKM '17: Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, November 6-10. 837-846.
Available at: https://ink.library.smu.edu.sg/sis_research/3865
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/3132847.3132933
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons