Publication Type
Journal Article
Version
acceptedVersion
Publication Date
9-2017
Abstract
Mental health related disorders are common diseases, especially among the elder. Among the various mental health diseases, one potential threat to ageing-in-place is the risk of depression. In this paper, we propose a simple unobtrusive sensing system using passive infra-red motion sensors to monitor the activities of daily living of elderly, who are living alone. A feature extraction module comprising of three layers-states, events, and activities, and the corresponding algorithms are proposed to extract features. Four popular classification models-neural network, C4.5 decision tree, Bayesian network, and support vector machine are then applied to detect the severity of depression. We implement and test the algorithms on sensor data collected over three months from 20 elderly, each in different daily living conditions. Our evaluation shows that the proposed algorithms are effective in detecting both normal condition and mild depression with up to 96% accuracy, using neural network as the classification algorithm. The sensing system is non-intrusive and cost-effective, with the potential of use for long-term depression monitoring and detection of early symptoms of mental related disorders. This enables caregivers to provide timely interventions to elderly, who are at risk of depression.
Keywords
Feature extraction, depression detection, smart homes, unobtrusive monitoring, sensor technologies
Discipline
Communication Technology and New Media | Health Information Technology | Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
IEEE Sensors Journal
Volume
17
Issue
17
First Page
5694
Last Page
5704
ISSN
1530-437X
Identifier
10.1109/JSEN.2017.2729594
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
KIM, Jung-Yoon; LIU, Na; TAN, Hwee Xian; and CHU, Chao-Hsien.
Unobtrusive monitoring to detect depression for elderly with chronic illnesses. (2017). IEEE Sensors Journal. 17, (17), 5694-5704.
Available at: https://ink.library.smu.edu.sg/sis_research/3773
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/JSEN.2017.2729594
Included in
Communication Technology and New Media Commons, Health Information Technology Commons, Software Engineering Commons