Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
2-2016
Abstract
Spatio-temporal matching of services to customers online is a problem that arises on a large scale in many domains associated with shared transportation (ex: taxis, ride sharing, super shuttles, etc.) and delivery services (ex: food, equipment, clothing, home fuel, etc.). A key characteristic of these problems is that matching of services to customers in one round has a direct impact on the matching of services to customers in the next round. For instance, in the case of taxis, in the second round taxis can only pick up customers closer to the drop off point of the customer from the first round of matching. Traditionally, greedy myopic approaches have been adopted to address such large scale online matching problems. While they provide solutions in a scalable manner, due to their myopic nature the quality of matching obtained can be improved significantly (demonstrated in our experimental results). In this paper, we present a two stage stochastic optimization formulation to consider expected future demand. We then provide multiple enhancements to solve large scale problems more effectively and efficiently. Finally, we demonstrate the significant improvement provided by our techniques over myopic approaches on two real world taxi data sets.
Keywords
Artificial intelligence, Optimization, Sales, Taxicabs, Large-scale problem, On-line matching
Discipline
Artificial Intelligence and Robotics | Technology and Innovation | Transportation
Research Areas
Intelligent Systems and Optimization
Publication
Proceedings of the 30th AAAI Conference on Artificial Intelligence 2016: Phoenix, Arizona, February 12-17
First Page
3271
Last Page
3277
ISBN
9781577357667
Publisher
AAAI Press
City or Country
Palo Alto, CA
Citation
LOWALEKAR, Meghna; VARAKANTHAM, Pradeep; and JAILLET, Patrick.
Online spatio-temporal matching in stochastic and dynamic domains. (2016). Proceedings of the 30th AAAI Conference on Artificial Intelligence 2016: Phoenix, Arizona, February 12-17. 3271-3277.
Available at: https://ink.library.smu.edu.sg/sis_research/3736
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12385
Included in
Artificial Intelligence and Robotics Commons, Technology and Innovation Commons, Transportation Commons