Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
4-2017
Abstract
We propose collective entity linking over tweets that are close in space and time. This exploits the fact that events or geographical points of interest often result in related entities being mentioned in spatio-temporal proximity. Our approach directly applies to geocoded tweets. Where geocoded tweets are overly sparse among all tweets, we use a relaxed version of spatial proximity which utilizes both geocoded and non-geocoded tweets linked by common mentions. Entity linking is affected by noisy mentions extracted and incomplete knowledge bases. Moreover, to perform evaluation on the entity linking results, much manual annotation of mentions is often required. To mitigate these challenges, we propose comparison-based evaluation, which assesses the change in linking quality when one linking method modifies the output of another. With this evaluation we show that differences between collective linking and local linking, i.e. linking entities in each tweet individually, are statistically significant. In extensive experiments, collective linking consistently yields more positive changes to the linking quality, than negative changes. The ratio of positive to negative changes varies from 1.44 to 12, depending on the experiment settings.
Keywords
Entity disambiguation, Concept linking, Entity linking
Discipline
Databases and Information Systems | Social Media | Software Engineering
Research Areas
Data Science and Engineering
Publication
Advances in Information Retrieval: 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, Proceedings
Volume
10193
First Page
82
Last Page
94
ISBN
9783319566085
Identifier
10.1007/978-3-319-56608-5_7
Publisher
Springer
City or Country
Cham
Citation
CHONG, Wen Haw; LIM, Ee-peng; and COHEN, William.
Collective entity linking in tweets over space and time. (2017). Advances in Information Retrieval: 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, Proceedings. 10193, 82-94.
Available at: https://ink.library.smu.edu.sg/sis_research/3720
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1007/978-3-319-56608-5_7
Included in
Databases and Information Systems Commons, Social Media Commons, Software Engineering Commons