Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
10-2016
Abstract
Concern localization refers to the process of locating code units that match a particular textual description. It takes as input textual documents such as bug reports and feature requests and outputs a list of candidate code units that are relevant to the bug reports or feature requests. Many information retrieval (IR) based concern localization techniques have been proposed in the literature. These techniques typically represent code units and textual descriptions as a bag of tokens at one level of abstraction, e.g., each token is a word, or each token is a topic. In this work, we propose a multi-abstraction concern localization technique named MULAB. MULAB represents a code unit and a textual description at multiple abstraction levels. Similarity of a textual description and a code unit is now made by considering all these abstraction levels. We combine a vector space model and multiple topic models to compute the similarity and apply a genetic algorithm to infer semi-optimal topic model configurations. We have evaluated our solution on 136 concerns from 8 open source Java software systems. The experimental results show that MULAB outperforms the state-of-art baseline PR, which is proposed by Scanniello et al. in terms of effectiveness and rank.
Keywords
Concern localization, Multi-abstraction, Text retrieval, Topic modeling
Discipline
Databases and Information Systems | Software Engineering
Publication
2016 IEEE International Conference on Software Maintenance and Evolution: ICSME 2016: Proceedings, 2-10 October 2016, Raleigh, North Carolina
First Page
110
Last Page
121
ISBN
9781509038060
Identifier
10.1109/ICSME.2016.51
Publisher
IEEE Computer Society
City or Country
Los Alamitos, CA
Citation
ZHANG, Yun; LO, David; XIA, Xin; LE, Tien-Duy B.; SCANNIELLO, Giuseppe; and SUN, Jianling.
Inferring links between concerns and methods with multi-abstraction vector space model. (2016). 2016 IEEE International Conference on Software Maintenance and Evolution: ICSME 2016: Proceedings, 2-10 October 2016, Raleigh, North Carolina. 110-121.
Available at: https://ink.library.smu.edu.sg/sis_research/3667
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.ieeecomputersociety.org/10.1109/ICSME.2016.51