Publication Type
Journal Article
Version
acceptedVersion
Publication Date
1-2017
Abstract
How can we find a general way to choose the most suitable samples for training a classifier? Even with very limited prior information? Active learning, which can be regarded as an iterative optimization procedure, plays a key role to construct a refined training set to improve the classification performance in a variety of applications, such as text analysis, image recognition, social network modeling, etc. Although combining representativeness and informativeness of samples has been proven promising for active sampling, state-of-the-art methods perform well under certain data structures. Then can we find a way to fuse the two active sampling criteria without any assumption on data? This paper proposes a general active learning framework that effectively fuses the two criteria. Inspired by a two-sample discrepancy problem, triple measures are elaborately designed to guarantee that the query samples not only possess the representativeness of the unlabeled data but also reveal the diversity of the labeled data. Any appropriate similarity measure can be employed to construct the triple measures. Meanwhile, an uncertain measure is leveraged to generate the informativeness criterion, which can be carried out in different ways. Rooted in this framework, a practical active learning algorithm is proposed, which exploits a radial basis function together with the estimated probabilities to construct the triple measures and a modified best-versus-second best strategy to construct the uncertain measure, respectively. Experimental results on benchmark datasets demonstrate that our algorithm consistently achieves superior performance over the state-of-the-art active learning algorithms.
Keywords
Active learning, classification informative and representative, informativeness, representativeness
Discipline
Computer Sciences | Databases and Information Systems | Theory and Algorithms
Research Areas
Data Science and Engineering
Publication
IEEE Transactions on Cybernetics
Volume
47
Issue
1
First Page
14
Last Page
26
ISSN
2168-2267
Identifier
10.1109/TCYB.2015.2496974
Publisher
IEEE
Citation
DU, Bo; WANG, Zengmao; ZHANG, Lefei; ZHANG, Liangpei; LIU, Wei; SHEN, Jialie; and TAO, Dacheng.
Exploring representativeness and informativeness for active learning. (2017). IEEE Transactions on Cybernetics. 47, (1), 14-26.
Available at: https://ink.library.smu.edu.sg/sis_research/3531
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TCYB.2015.2496974