Publication Type
Journal Article
Version
publishedVersion
Publication Date
3-2006
Abstract
We report the implementation of a text input application (speller) based on the P300 event related potential. We obtain high accuracies by using an SVM classifier and a novel feature. These techniques enable us to maintain fast performance without sacrificing the accuracy, thus making the speller usable in an online mode. In order to further improve the usability, we perform various studies on the data with a view to minimizing the training time required. We present data collected from nine healthy subjects, along with the high accuracies (of the order of 95% or more) measured online. We show that the training time can be further reduced by a factor of two from its current value of about 20 min. High accuracy, fast learning, and online performance make this P300 speller a potential communication tool for severely disabled individuals, who have lost all other means of communication and are otherwise cut off from the world, provided their disability does not interfere with the performance of the speller.
Keywords
P300, brain-computer interface, event related potential, speller, support vector machine (SVM)
Discipline
Computer Sciences | Graphics and Human Computer Interfaces
Publication
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume
14
Issue
1
First Page
24
Last Page
29
ISSN
1534-4320
Identifier
10.1109/TNSRE.2005.862695
Publisher
IEEE
Citation
THULASIDAS, Manoj; GUAN, Cuntai; and WU, Jiankang.
Robust classification of EEG signal for brain-computer interface. (2006). IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14, (1), 24-29.
Available at: https://ink.library.smu.edu.sg/sis_research/3491
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1109/TNSRE.2005.862695