Publication Type
Conference Paper
Version
submittedVersion
Publication Date
1-2014
Abstract
Internet TV has attracted a significant amount of attention from the conventional cable TV service providers, by providing customized TV programs at preferred time slots. The cable TV service providers are seeking to retain their customers by giving them a better experience: by understanding their customers’ preferences and upselling them the right products to cater to their interests. It is not easy to understand customer preferences though, since customers are not able to watch channels to which they have not subscribed. This makes it difficult to predict what they will like to watch, as a result. In this paper, I discuss my ongoing research on TV viewership behavior. I model customer preferences using a technique called latent Dirichlet analysis (LDA), by considering channel viewing behavior as a similar process of article generation. Customer preferences over unsubscribed channel are calculated from the LDA model. My model achieves better prediction performance as a result. I also present a quantitative case study to show that the observed channel viewing behavior makes sense.
Keywords
Cable TV, customer targeting, data mining, retail telecom services, viewership pattern
Discipline
Computer Sciences | Recreation Business
Publication
Pacific Telecommunications Council (PTC’14)
Publisher
IEEE
City or Country
Honolulu, Hawaii
Citation
Bing Tian DAI.
How Can Consumer Preferences Be Leveraged for Targeted Upselling in Cable TV Services?. (2014). Pacific Telecommunications Council (PTC’14).
Available at: https://ink.library.smu.edu.sg/sis_research/3466
Copyright Owner and License
LARC
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.