Publication Type
Journal Article
Version
publishedVersion
Publication Date
4-2016
Abstract
This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world data sets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure and, hence, expand the service lifespan by several folds.
Keywords
Wireless sensor networks, Data compression, Correlation, Compression algorithms, Monitoring, Sensor phenomena and characterization
Discipline
Software Engineering | Theory and Algorithms
Research Areas
Software and Cyber-Physical Systems
Publication
IEEE Sensors Journal
Volume
16
Issue
12
First Page
5072
Last Page
5083
ISSN
1530-437X
Identifier
10.1109/JSEN.2016.2550599
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
ALSHEIKH, Mohammad Abu; LIN, Shaowei; NIYATO, Dusit; and Hwee-Pink TAN.
Rate Distortion Balanced Data Compression in Wireless Sensor Networks. (2016). IEEE Sensors Journal. 16, (12), 5072-5083.
Available at: https://ink.library.smu.edu.sg/sis_research/3423
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1109/JSEN.2016.2550599