Publication Type
Conference Paper
Version
submittedVersion
Publication Date
9-2004
Abstract
We report the implementation of a text input application (speller) based on the P300 event related potential. We obtain high accuracies by using an SVM classifier and a novel feature. These techniques enable us to maintain fast performance without sacrificing the accuracy, thus making the speller usable in an online mode. In order to further improve the usability, we perform various studies on the data with a view to minimizing the training time required. We present data collected from nine healthy subjects, along with the high accuracies (of the order of 95% or more) measured online. We show that the training time can be further reduced by a factor of two from its current value of about 20 min. High accuracy, fast learning, and online performance make this P300 speller a potential communication tool for severely disabled individuals, who have lost all other means of communication and are otherwise cut off from the world, provided their disability does not interfere with the performance of the speller.
Keywords
P300 evoked potential, brain-computer interface, classification, information transfer rate
Discipline
Databases and Information Systems | Graphics and Human Computer Interfaces
Publication
International Conference on Advances in Medical Signal and Information Processing 2nd MedSIP 2004, September
City or Country
Malta
Citation
THULASIDAS, Manoj.
Robust classification of event-related potential for brain-computer interface. (2004). International Conference on Advances in Medical Signal and Information Processing 2nd MedSIP 2004, September.
Available at: https://ink.library.smu.edu.sg/sis_research/3334
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Included in
Databases and Information Systems Commons, Graphics and Human Computer Interfaces Commons