Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
8-2016
Abstract
Vehicle trajectories are one of the most important data in location-based services. The quality of trajectories directly affects the services. However, in the real applications, trajectory data are not always sampled densely. In this paper, we study the problem of recovering the entire route between two distant consecutive locations in a trajectory. Most existing works solve the problem without using those informative historical data or solve it in an empirical way. We claim that a data-driven and probabilistic approach is actually more suitable as long as data sparsity can be well handled. We propose a novel route recovery system in a fully probabilistic way which incorporates both temporal and spatial dynamics and addresses all the data sparsity problem introduced by the probabilistic method. It outperforms the existing works with a high accuracy (over 80%) and shows a strong robustness even when the length of routes to be recovered is very long (about 30 road segments) or the data is very sparse.
Keywords
Location-based services, Route recovery, Spatio-temporal, Trajectory
Discipline
Computer Sciences | Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
KDD '16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: San Francisco, California, August 13-17, 2016
First Page
1915
Last Page
1924
ISBN
9781450342322
Identifier
10.1145/2939672.2939843
Publisher
ACM
City or Country
New York
Citation
WU, Hao; MAO, Jiangyun; SUN, Weiwei; ZHENG, Baihua; ZHANG, Hanyuan; CHEN, Ziyang; and WANG, Wei.
Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics. (2016). KDD '16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: San Francisco, California, August 13-17, 2016. 1915-1924.
Available at: https://ink.library.smu.edu.sg/sis_research/3319
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1145/2939672.2939843
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons