Top-down approaches to abstract medical time series using linear segments
Publication Type
Conference Proceeding Article
Publication Date
10-2001
Abstract
This work attempts to abstract medical time series using a minimum number of linear segments such that the integral square error between the abstraction and the data is minimum. The problem is difficult since it involves a multiobjective optimization procedure, and the optimization process is affected by the presence of local minima, noise and outliers. This work proposes a greedy approach, which exploits the local and global information for the optimization. Initially, the number of linear segments needed is estimated roughly by detecting the number of cycles in the data set. Then the tendency of each data point to form bends is measured locally in terms of typicality values. A global consensus in terms of clustering is used to select the breakpoints from all the data points with various typicality values. These breakpoints are utilized to partition the data set. Approximating each partition with a linear segment subsequently forms a crude abstraction. The difference between the original data set and the crude abstraction is exploited as the feedback information such that the crude abstraction can be split further for refinement. The efficacy of the proposed method is demonstrated on some real life intensive care unit (ICU) data sets.
Keywords
Abstraction, Approximation, ICU and medicine, Segmentation, Time series
Discipline
Numerical Analysis and Scientific Computing
Publication
e-Systems and e-Man for Cybernetics in Cyber Space: 001 IEEE International Conference on Systems, Man and Cybernetics
Volume
2
First Page
765
Last Page
770
ISBN
0780370872
Identifier
10.1109/ICSMC.2001.973007
Publisher
IEEE
City or Country
USA
Citation
Sarkar, M. and Tze-Yun LEONG.
Top-down approaches to abstract medical time series using linear segments. (2001). e-Systems and e-Man for Cybernetics in Cyber Space: 001 IEEE International Conference on Systems, Man and Cybernetics. 2, 765-770.
Available at: https://ink.library.smu.edu.sg/sis_research/3046