Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
9-2001
Abstract
This paper addresses breast cancer diagnosis problem as a pattern classification problem. Specifically, the problem is studied using Wisconsin-Madison breast cancer data set. Fuzzy rules are generated from the input-output relationship so that the diagnosis becomes easier and transparent for both patients and physicians. For each class, at least one training pattern is chosen as the prototype, provided (a) the maximum membership of the training pattern is in the given class, and (b) among all the training patterns, the neighborhood of this training pattern has the least fuzzy-rough uncertainty in the given class. Using the fuzzy-rough uncertainty, a cluster is constructed around each prototype. Finally, these clusters are interpreted as the fuzzy rules that relate the prognostic factors and the diagnosis results. The advantages of the proposed algorithm are, (a) there is no need to know the structure of the training data, (b) the number of fuzzy rules does not increase with the increase of the number of input dimensions, and (c) small number of fuzzy rules is generated. With the three generated fuzzy rules, 96.20% classification efficiency is achieved, which is comparable to other rule generation techniques.
Keywords
Clustering, Breast cancer, classification, diagnosis, fuzzy set, nearest neighbors algorithm, rough set, rule base, Wisconsin-Madison data
Discipline
Health Information Technology | Theory and Algorithms
Research Areas
Intelligent Systems and Optimization
Publication
MEDINFO 2001: Proceedings of the 10th World Congress on Medical Informatics
First Page
1394
Last Page
1398
ISBN
9781586031947
Identifier
10.3233/978-1-60750-928-8-1394
Publisher
IOS Press
City or Country
Amsterdam
Citation
SARKAR, Manish and Tze-Yun LEONG.
Nonparametric techniques to extract fuzzy rules for breast cancer diagnosis problem. (2001). MEDINFO 2001: Proceedings of the 10th World Congress on Medical Informatics. 1394-1398.
Available at: https://ink.library.smu.edu.sg/sis_research/3029
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.3233/978-1-60750-928-8-1394