Biomedical knowledge discovery with topological constraints modeling in bayesian networks: A preliminary report
Publication Type
Conference Proceeding Article
Publication Date
12-2007
Abstract
Serving as exploratory data analysis tools, Bayesian networks (BNs) can be automatically learned from data to compactly model direct dependency relationships among the variables in a domain. A major challenge in BN learning is to effectively represent and incorporate domain knowledge in the learning process to improve its efficiency and accuracy. In this paper, we examine two types of domain knowledge representation in BNs: matrix and rule. We develop a set of consistency checking mechanisms for the representations and describe their applications in BN learning. Empirical results from the canonical Asia network example show that topological constraints, especially those imposed on the undirected links in the corresponding completed partially directed acyclic graph (CPDAG) of the learned BN, are particularly useful. Preliminary experiments on a real-life coronary artery disease dataset show that both efficiency and accuracy can be improved with the proposed methodology. The bootstrap approach adopted in the BN learning process with topological constraints also highlights the set of the learned links with high significance, which can in turn prompt further exploration of the actual relationships involved.
Keywords
Bayesian networks, bootstrap approach, coronary artery disease, domain knowledge
Discipline
Health Information Technology | OS and Networks
Publication
12th World Congress on Medical Informatics, MEDINFO 2007
Volume
129
First Page
560
Last Page
565
ISBN
9781586037741
Publisher
IOS Press
City or Country
Brisbane, Australia
Citation
Li G. and Tze-Yun LEONG.
Biomedical knowledge discovery with topological constraints modeling in bayesian networks: A preliminary report. (2007). 12th World Congress on Medical Informatics, MEDINFO 2007. 129, 560-565.
Available at: https://ink.library.smu.edu.sg/sis_research/2998