Publication Type
Journal Article
Version
acceptedVersion
Publication Date
4-2014
Abstract
Wireless sensor networks (WSNs) monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in WSNs. The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.
Keywords
Wireless sensor networks, machine learning, data mining, security, localization, clustering, data aggregation, event detection, query processing, data integrity, fault detection, medium access control, compressive sensing.
Discipline
Computer Sciences | Software Engineering | Theory and Algorithms
Research Areas
Software and Cyber-Physical Systems
Publication
IEEE Communications Surveys and Tutorials
Volume
16
Issue
4
First Page
1996
Last Page
2018
ISSN
1553-877X
Identifier
10.1109/COMST.2014.2320099
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
ALSHEIKH, Mohammad Abu; LIN, Shaowei; NIYATO, Dusit; and Hwee-Pink TAN.
Machine learning in wireless sensor networks: Algorithms, strategies, and applications. (2014). IEEE Communications Surveys and Tutorials. 16, (4), 1996-2018.
Available at: https://ink.library.smu.edu.sg/sis_research/2963
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1109/COMST.2014.2320099