Publication Type
Journal Article
Version
publishedVersion
Publication Date
12-2010
Abstract
Energy consumption is an important issue in the design of wireless sensor networks (WSNs) which typically rely on portable energy sources like batteries for power. Recent advances in ambient energy harvesting technologies have made it possible for sensor nodes to be powered by ambient energy entirely without the use of batteries. However, since the energy harvesting process is stochastic, exact sleep-and-wakeup schedules cannot be determined in WSNs Powered solely using Ambient Energy Harvesters (WSN–HEAP). Therefore, many existing WSN routing protocols cannot be used in WSN–HEAP. In this paper, we design an opportunistic routing protocol (EHOR) for multi-hop WSN–HEAP. Unlike traditional opportunistic routing protocols like ExOR or MORE, EHOR takes into account energy constraints because nodes have to shut down to recharge once their energy are depleted. Furthermore, since the rate of charging is dependent on environmental factors, the exact identities of nodes that are awake cannot be determined in advance. Therefore, choosing an optimal forwarder is another challenge in EHOR. We use a regioning approach to achieve this goal. Using extensive simulations incorporating experimental results from the characterization of different types of energy harvesters, we evaluate EHOR and the results show that EHOR increases goodput and efficiency compared to traditional opportunistic routing protocols and other non-opportunistic routing protocols suited for WSN–HEAP.
Keywords
Opportunistic routing, Wireless sensor networks, Energy harvesting
Discipline
Computer Sciences | Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Computer Networks
Volume
54
Issue
17
First Page
2943
Last Page
2966
ISSN
1389-1286
Identifier
10.1016/j.comnet.2010.05.012
Publisher
Elsevier
Citation
EU, Zhi Ang; TAN, Hwee-Pink; and SEAH, Winston K. G..
Opportunistic Routing in Wireless Sensor Networks Powered by Ambient Energy Harvesting. (2010). Computer Networks. 54, (17), 2943-2966.
Available at: https://ink.library.smu.edu.sg/sis_research/2954
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1016/j.comnet.2010.05.012