Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
3-2015
Abstract
Numerous rule-based specification mining approaches have been proposed in the literature. Many of these approaches analyze a set of execution traces to discover interesting usage rules, e.g., whenever lock() is invoked, eventually unlock() is invoked. These techniques often generate and enumerate a set of candidate rules and compute some interestingness scores. Rules whose interestingness scores are above a certain threshold would then be output. In past studies, two measures, namely support and confidence, which are well-known measures, are often used to compute these scores. However, aside from these two, many other interestingness measures have been proposed. It is thus unclear if support and confidence are the best interestingness measures for specification mining. In this work, we perform an empirical study that investigates the utility of 38 interestingness measures in recovering correct specifications of classes from Java libraries. We used a ground truth dataset consisting of 683 rules and recorded execution traces that are produced when we run the DaCapo test suite. We apply 38 different interestingness measures to identify correct rules from a pool of candidate rules. Our study highlights that many measures are on par to support and confidence. Some of the measures are even better than support or confidence and at least one of the measures is statistically significantly better than the two measures. We also find that compositions of several measures with support statistically significantly outperform the composition of support and confidence. Our findings highlight the need to look beyond standard support and confidence to find interesting rules.
Discipline
Computer Sciences | Databases and Information Systems | Numerical Analysis and Scientific Computing
Research Areas
Software and Cyber-Physical Systems
Publication
2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER): March 2-6, Montréal: Proceedings
First Page
331
Last Page
340
ISBN
9781479984695
Identifier
10.1109/SANER.2015.7081843
Publisher
IEEE
City or Country
Piscataway, NJ
Citation
LE, Bui Tien Duy and David LO.
Beyond Support and Confidence: Exploring Interestingness Measures for Rule-based Specification Mining. (2015). 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER): March 2-6, Montréal: Proceedings. 331-340.
Available at: https://ink.library.smu.edu.sg/sis_research/2862
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/SANER.2015.7081843
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons