Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
6-2008
Abstract
Active learning has been shown as a key technique for improving content-based image retrieval (CBIR) performance. Among various methods, support vector machine (SVM) active learning is popular for its application to relevance feedback in CBIR. However, the regular SVM active learning has two main drawbacks when used for relevance feedback. First, SVM often suffers from learning with a small number of labeled examples, which is the case in relevance feedback. Second, SVM active learning usually does not take into account the redundancy among examples, and therefore could select multiple examples in relevance feedback that are similar (or even identical) to each other. In this paper, we propose a novel scheme that exploits both semi-supervised kernel learning and batch mode active learning for relevance feedback in CBIR. In particular, a kernel function is first learned from a mixture of labeled and unlabeled examples. The kernel will then be used to effectively identify the informative and diverse examples for active learning via a min-max framework. An empirical study with relevance feedback of CBIR showed that the proposed scheme is significantly more effective than other state-of-the-art approaches.
Keywords
Image retrieval, minimax techniques, support vector machines, active learning, Content-based image retrieval, Kernel functions
Discipline
Computer Sciences | Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2008: Anchorage, Alaska, 23-28 June
First Page
1
Last Page
7
ISBN
9781424422432
Identifier
10.1109/CVPR.2008.4587350
Publisher
IEEE
City or Country
Piscataway, NJ
Citation
HOI, Steven; JIN, Rong; ZHU, Jianke; and LYU, Michael R..
Semi-supervised SVM batch mode active learning for image retrieval. (2008). IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2008: Anchorage, Alaska, 23-28 June. 1-7.
Available at: https://ink.library.smu.edu.sg/sis_research/2380
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/CVPR.2008.4587350