Publication Type
Journal Article
Version
publishedVersion
Publication Date
4-2015
Abstract
Given the proliferation of review content, and the fact that reviews are highly diverse and often unnecessarily verbose, users frequently face the problem of selecting the appropriate reviews to consume. Micro-reviews are emerging as a new type of online review content in the social media. Micro-reviews are posted by users of check-in services such as Foursquare. They are concise (up to 200 characters long) and highly focused, in contrast to the comprehensive and verbose reviews. In this paper, we propose a novel mining problem, which brings together these two disparate sources of review content. Specifically, we use coverage of micro-reviews as an objective for selecting a set of reviews that covers efficiently the salient aspects of an entity. Our approach consists of a two-step process: matching review sentences to micro-reviews, and selecting a small set of reviews that covers as many micro-reviews as possible, with few sentences. We formulate this objective as a combinatorial optimization problem, and show how to derive an optimal solution using Integer Linear Programming. We also propose an efficient heuristic algorithm that approximates the optimal solution. Finally, we perform a detailed evaluation of all the steps of our methodology using data collected from Foursquare and Yelp.
Keywords
Micro-review, review selection, coverage, social media
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing | Social Media
Research Areas
Data Science and Engineering
Publication
IEEE Transactions on Knowledge and Data Engineering (TKDE)
Volume
27
Issue
4
First Page
1098
Last Page
1111
ISSN
1041-4347
Identifier
10.1109/TKDE.2014.2356456
Publisher
IEEE
Citation
NGUYEN, Thanh-Son; LAUW, Hady W.; and TSAPARAS, Panayiotis.
Review Selection Using Micro-Reviews. (2015). IEEE Transactions on Knowledge and Data Engineering (TKDE). 27, (4), 1098-1111.
Available at: https://ink.library.smu.edu.sg/sis_research/2312
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/TKDE.2014.2356456
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons, Social Media Commons