Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
11-2011
Abstract
Traditional multiple kernel learning (MKL) algorithms are essentially supervised learning in the sense that the kernel learning task requires the class labels of training data. However, class labels may not always be available prior to the kernel learning task in some real world scenarios, e.g., an early preprocessing step of a classification task or an unsupervised learning task such as dimension reduction. In this paper, we investigate a problem of Unsupervised Multiple Kernel Learning (UMKL), which does not require class labels of training data as needed in a conventional multiple kernel learning task. Since a kernel essentially defines pairwise similarity between any two examples, our unsupervised kernel learning method mainly follows two intuitive principles: (1) a good kernel should allow every example to be well reconstructed from its localized bases weighted by the kernel values; (2) a good kernel should induce kernel values that are coincided with the local geometry of the data. We formulate the unsupervised multiple kernel learning problem as an optimization task and propose an efficient alternating optimization algorithm to solve it. Empirical results on both classification and dimension reductions tasks validate the efficacy of the proposed UMKL algorithm.
Discipline
Computer Sciences | Databases and Information Systems
Publication
JMLR: Workshop and Conference Proceedings: 3rd Asian Conference on Machine Learning 2011, November 13-15, Taoyuan, Taiwan
Volume
20
First Page
129
Last Page
144
ISSN
1532-4435
Publisher
JMLR
City or Country
Cambridge, MA
Citation
ZHUANG, Jinfeng; WANG, Jialei; HOI, Steven C. H.; and LAN, Xiangyang.
Unsupervised Multiple Kernel Learning. (2011). JMLR: Workshop and Conference Proceedings: 3rd Asian Conference on Machine Learning 2011, November 13-15, Taoyuan, Taiwan. 20, 129-144.
Available at: https://ink.library.smu.edu.sg/sis_research/2291
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://jmlr.csail.mit.edu/proceedings/papers/v20/zhuang11/zhuang11.pdf