Publication Type
Journal Article
Version
submittedVersion
Publication Date
7-2013
Abstract
This paper presents transformative energy-saving schedule-leveraging agent (TESLA), an agent for optimizing energy usage in commercial buildings. TESLA’s key insight is that adding flexibility to event/meeting schedules can lead to significant energy savings. This paper provides four key contributions: (i) online scheduling algorithms, which are at the heart of TESLA, to solve a stochastic mixed integer linear program for energy-efficient scheduling of incrementally/dynamically arriving meetings and events; (ii) an algorithm to effectively identify key meetings that lead to significant energy savings by adjusting their flexibility; (iii) an extensive analysis on energy savings achieved by TESLA; and (iv) surveys of real users which indicate that TESLA’s assumptions of user flexibility hold in practice. TESLA was evaluated on data gathered from over 110,000 meetings held at nine campus buildings during an 8-month period in 2011–2012 at the University of Southern California and Singapore Management University. These results and analysis show that, compared to the current systems, TESLA can substantially reduce overall energy consumption.
Keywords
Energy, Sustainable multiagent systems, Energy-oriented scheduling, Scheduling flexibility
Discipline
Artificial Intelligence and Robotics | Operations Research, Systems Engineering and Industrial Engineering
Research Areas
Intelligent Systems and Optimization
Publication
Autonomous Agents and Multi-Agent Systems
Volume
28
Issue
4
First Page
605
Last Page
636
ISSN
1387-2532
Identifier
10.1007/s10458-013-9234-0
Publisher
Springer Verlag
Citation
KWAK, Jun Young; VARAKANTHAM, Pradeep; Maheswaran, Rajiv; Tambe, Milind; and Becerik-Gerber, Burcin.
TESLA: An extended study of an energy-saving agent that leverages schedule flexibility. (2013). Autonomous Agents and Multi-Agent Systems. 28, (4), 605-636.
Available at: https://ink.library.smu.edu.sg/sis_research/1931
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1007/s10458-013-9234-0
Included in
Artificial Intelligence and Robotics Commons, Operations Research, Systems Engineering and Industrial Engineering Commons