Publication Type
Conference Proceeding Article
Version
acceptedVersion
Publication Date
11-2013
Abstract
Online reviews are an invaluable resource for web users trying to make decisions regarding products or services. However, the abundance of review content, as well as the unstructured, lengthy, and verbose nature of reviews make it hard for users to locate the appropriate reviews, and distill the useful information. With the recent growth of social networking and micro-blogging services, we observe the emergence of a new type of online review content, consisting of bite-sized, 140 character-long reviews often posted reactively on the spot via mobile devices. These micro-reviews are short, concise, and focused, nicely complementing the lengthy, elaborate, and verbose nature of full-text reviews. We propose a novel methodology that brings together these two diverse types of review content, to obtain something that is more than the sum of its parts. We use micro-reviews as a crowdsourced way to extract the salient aspects of the reviewed item, and propose a new formulation of the review selection problem that aims to find a small set of reviews that efficiently cover the micro-reviews. Our approach consists of a two-step process: matching review sentences to micro-reviews and then selecting reviews such that we cover as many micro-reviews as possible, with few sentences. We perform a detailed evaluation of all the steps of our methodology using data collected from Foursquare and Yelp.
Keywords
Micro-review, review selection, Algorithms, Experimentation
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
CIKM '13: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management: San Francisco, October 27 - November 1
First Page
1067
Last Page
1076
ISBN
9781450322638
Identifier
10.1145/2505515.2505568
Publisher
ACM
City or Country
New York
Citation
NGUYEN, Thanh-Son; LAUW, Hady W.; and TSAPARAS, Panayiotis.
Using Micro-Reviews to Select an Efficient Set of Reviews. (2013). CIKM '13: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management: San Francisco, October 27 - November 1. 1067-1076.
Available at: https://ink.library.smu.edu.sg/sis_research/1895
Copyright Owner and License
LARC
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/2505515.2505568
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons