Publication Type

Journal Article

Version

publishedVersion

Publication Date

2003

Abstract

Hierarchical text classification or simply hierarchical classification refers to assigning a document to one or more suitable categories from a hierarchical category space. In our literature survey, we have found that the existing hierarchical classification experiments used a variety of measures to evaluate performance. These performance measures often assume independence between categories and do not consider documents misclassified into categories that are similar or not far from the correct categories in the category tree. In this paper, we therefore propose new performance measures for hierarchical classification. The proposed performance measures consist of category similarity measures and distance-based measures that consider the contributions of misclassified documents. Our experiments on hierarchical classification methods based on SVM classifiers and binary Naive Bayes classifiers showed that SVM classifiers perform better than Naïve Bayes classifiers on Reuters-21578 collection according to the extended measures. A new classifier-centric measure called blocking measure is also defined to examine the performance of subtree classifiers in a top-down level-based hierarchical classification method.

Discipline

Databases and Information Systems | Numerical Analysis and Scientific Computing

Publication

Journal of the American Society for Information Science and Technology (JASIST)

Volume

54

Issue

11

First Page

1014

Last Page

1028

ISSN

1532-2882

Identifier

10.1002/asi.10298

Publisher

Wiley

Additional URL

http://doi.org/10.1002/asi.10298

Share

COinS