Predicting Image Popularity in an Incomplete Social Media Community by a Weighted Bi-partite Graph
Publication Type
Conference Proceeding Article
Publication Date
2012
Abstract
Popularity prediction is a key problem in networks to analyze the information diffusion, especially in social media communities. Recently, there have been some custom-build prediction models in Digg and YouTube. However, these models are hardly transplant to an incomplete social network site (e.g., Flickr) by their unique parameters. In addition, because of the large scale of the network in Flickr, it is difficult to get all of the photos and the whole network. Thus, we are seeking for a method which can be used in such incomplete network. Inspired by a collaborative filtering method-Network-based Inference (NBI), we devise a weighted bipartite graph with undetected users and items to represent the resource allocation process in an incomplete network. Instead of image analysis, we propose a modified interdisciplinary models, called Incomplete Network-based Inference (INI). Using the data from 30 months in Flickr, we show the proposed INI is able to increase prediction accuracy by over 58.1%, compared with traditional NBI. We apply our proposed INI approach to personalized advertising application and show that it is more attractive than traditional Flickr advertising.
Keywords
Bipartite graph, incomplete network inference, personalized advertising, popularity prediction, social media
Discipline
Databases and Information Systems
Publication
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2000)
First Page
735
Last Page
740
ISBN
9781467316590
Identifier
10.1109/ICME.2012.43
Publisher
IEEE
City or Country
Melbourne, Australia
Citation
NIU, Xiang; LI, Lusong; MEI, Tao; SHEN, Jialie; and XU, Ke.
Predicting Image Popularity in an Incomplete Social Media Community by a Weighted Bi-partite Graph. (2012). Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2000). 735-740.
Available at: https://ink.library.smu.edu.sg/sis_research/1646
Additional URL
http://dx.doi.org/10.1109/ICME.2012.43