Publication Type

Journal Article

Version

acceptedVersion

Publication Date

4-2011

Abstract

Given a geographic query that is composed of query keywords and a location, a geographic search engine retrieves documents that are the most textually and spatially relevant to the query keywords and the location, respectively, and ranks the retrieved documents according to their joint textual and spatial relevances to the query. The lack of an efficient index that can simultaneously handle both the textual and spatial aspects of the documents makes existing geographic search engines inefficient in answering geographic queries. In this paper, we propose an efficient index, called IR-tree, that together with a top-k document search algorithm facilitates four major tasks in document searches, namely, 1) spatial filtering, 2) textual filtering, 3) relevance computation, and 4) document ranking in a fully integrated manner. In addition, IR-tree allows searches to adopt different weights on textual and spatial relevance of documents at the runtime and thus caters for a wide variety of applications. A set of comprehensive experiments over a wide range of scenarios has been conducted and the experiment results demonstrate that IR-tree outperforms the state-of-the-art approaches for geographic document searches.

Keywords

Geographic document search, index, search algorithm and IR-tree.

Discipline

Computer Sciences | Databases and Information Systems | Geographic Information Sciences

Publication

IEEE Transactions on Knowledge and Data Engineering

Volume

23

Issue

4

First Page

585

Last Page

599

ISSN

1041-4347

Identifier

10.1109/TKDE.2010.149

Publisher

IEEE

Additional URL

http://dx.doi.org/10.1109/TKDE.2010.149

Share

COinS