Publication Type
Journal Article
Version
acceptedVersion
Publication Date
11-2008
Abstract
Evaluation is prevalent in real life. With the advent of Web 2.0, online evaluation has become an important feature in many applications that involve information (e.g., video, photo, and audio) sharing and social networking (e.g., blogging). In these evaluation settings, a set of reviewers assign scores to a set of objects. As part of the evaluation analysis, we want to obtain fair reviews for all the given objects. However, the reality is that reviewers may deviate in their scores assigned to the same object, due to the potential bias of reviewers or controversy of objects. The statistical approach of averaging deviations to determine bias and controversy assumes that all reviewers and objects should be given equal weight. In this paper, we look beyond this assumption and propose an approach based on the following observations: 1) evaluation is subjective, as reviewers and objects have varying bias and controversy, respectively, and 2) bias and controversy are mutually dependent. These observations underlie our proposed reinforcement-based model to determine bias and controversy simultaneously. Our approach also quantifies evidence, which reveals the degree of confidence with which bias and controversy have been derived. This model is shown to be effective by experiments on real-life and synthetic data sets.
Keywords
Computer Applications, Information Technology and Systems Applications, Social and Behavioral Sciences
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
IEEE Transactions on Knowledge and Data Engineering
Volume
20
Issue
11
First Page
1490
Last Page
1504
ISSN
1041-4347
Identifier
10.1109/tkde.2008.77
Publisher
IEEE
Citation
LAUW, Hady Wirawan; LIM, Ee Peng; and WANG, Ke.
Bias and Controversy in Evaluation Systems. (2008). IEEE Transactions on Knowledge and Data Engineering. 20, (11), 1490-1504.
Available at: https://ink.library.smu.edu.sg/sis_research/127
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/tkde.2008.77
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons