Publication Type

Journal Article

Version

submittedVersion

Publication Date

6-2011

Abstract

In this paper, we analyze mixed 0-1 linear programs under objective uncertainty. The mean vector and the second moment matrix of the nonnegative objective coefficients is assumed to be known, but the exact form of the distribution is unknown. Our main result shows that computing a tight upper bound on the expected value of a mixed 0-1 linear program in maximization form with random objective is a completely positive program. This naturally leads to semidefinite programming relaxations that are solvable in polynomial time but provide weaker bounds. The result can be extended to deal with uncertainty in the moments and more complicated objective functions. Examples from order statistics and project networks highlight the applications of the model. Our belief is that the model will open an interesting direction for future research in discrete and linear optimization under uncertainty.

Keywords

Mixed 0-1 linear program, Moments, Completely positive program

Discipline

Operations and Supply Chain Management

Research Areas

Operations Management

Publication

Operations Research

Volume

59

Issue

3

First Page

713

Last Page

728

ISSN

0030-364X

Identifier

10.1287/opre.1110.0918

Publisher

INFORMS

Additional URL

https://doi.org/10.1287/opre.1110.0918

Share

COinS