Twitter-LDA

Publication Type

Data Set

Year

4-2011

Research Area

Data Management and Analytics

School/Department

School of Information Systems

Description/Abstract

Latent Dirichlet Allocation (LDA) has been widely used in textual analysis. The original LDA is used to find hidden "topics" in the documents, where a topic is a subject like "arts" or "education" that is discussed in the documents. The original setting in LDA, where each word has a topic label, may not work well with Twitter as tweets are short and a single tweet is more likely to talk about one topic. Hence, Twitter-LDA (T-LDA) has been proposed to address this issue. T-LDA also addresses the noisy nature of tweets, where it captures background words in tweets. As experiments in [7] have shown that T-LDA could capture more meaningful topics than LDA in Microblogs.

The original setting in Latent Dirichlet Allocation (LDA), where each word has a topic label, may not work well with Twitter as tweets are short and a single tweet is more likely to talk about one topic. Hence, Twitter-LDA (T-LDA) has been proposed to address this issue. T-LDA also addresses the noisy nature of tweets, where it captures background words in tweets.

Disciplines

Computer Sciences | Databases and Information Systems

Share

COinS