Publication Type

Journal Article

Version

acceptedVersion

Publication Date

12-2022

Abstract

Current climate change aggravates human health hazards posed by heat stress. Forests can locally mitigate this by acting as strong thermal buffers, yet potential mediation by forest ecological characteristics remains underexplored. We report over 14 months of hourly microclimate data from 131 forest plots across four European countries and compare these to open-field controls using physiologically equivalent temperature (PET) to reflect human thermal perception. Forests slightly tempered cold extremes, but the strongest buffering occurred under very hot conditions (PET >35°C), where forests reduced strong to extreme heat stress day occurrence by 84.1%. Mature forests cooled the microclimate by 12.1 to 14.5°C PET under, respectively, strong and extreme heat stress conditions. Even young plantations reduced those conditions by 10°C PET. Forest structure strongly modulated the buffering capacity, which was enhanced by increasing stand density, canopy height and canopy closure. Tree species composition had a more modest yet significant influence: that is, strongly shade-casting, small-leaved evergreen species amplified cooling. Tree diversity had little direct influences, though indirect effects through stand structure remain possible. Forests in general, both young and mature, are thus strong thermal stress reducers, but their cooling potential can be even further amplified, given targeted (urban) forest management that considers these new insights.

Keywords

Dr. FOREST, Forest microclimate, Heat stress, Nature-based solution, Physiologically Equivalent Temperature, Thermal comfort

Discipline

Environmental Sciences | Urban Studies | Urban Studies and Planning

Research Areas

Integrative Research Areas

Publication

Global Change Biology

Volume

28

Issue

24

First Page

7340

Last Page

7352

ISSN

1354-1013

Identifier

10.1111/gcb.16419

Publisher

Wiley

Copyright Owner and License

Publisher

Additional URL

https://doi.org/10.1111/gcb.16419

Share

COinS