Publication Type
Working Paper
Version
publishedVersion
Publication Date
4-2002
Abstract
This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including the well known lognormal stochastic volatility model, and has an advantage in the ease with which different specifications on stochastic volatility can be tested. In addition, the functional form of transformation which induces marginal normality of volatility is obtained as a byproduct of this general way of modeling stochastic volatility. The efficient method of moments approach is used to estimate model parameters. Empirical results reveal that the lognormal stochastic volatility model is rejected for daily index return data but not for daily individual stock return data. As a consequence, the stock volatility can be well described by the lognormal distribution as its marginal distribution, consistent with the result found in a recent literature (cf Andersen et al (2001a)). However, the index volatility does not follow the lognormal distribution as its marginal distribution.
Keywords
Box-Cox Transformation, GARCH, EMM, Stochastic Volatility
Discipline
Finance
Research Areas
Finance
Identifier
10.2139/ssrn.307731
Publisher
SSRN
Citation
YU, Jun and YANG, Zhenlin.
A class of nonlinear stochastic volatility models. (2002).
Available at: https://ink.library.smu.edu.sg/soe_research/2122
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.2139/ssrn.307731