Publication Type

Journal Article

Version

acceptedVersion

Publication Date

8-2014

Abstract

The Laplace approximation is used to perform maximum likelihood estimation of univariate and multivariate stochastic volatility (SV) models. It is shown that the implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and compared with some existing maximum likelihood methods using both simulated data and actual data. It is found that the new methods match the statistical efficiency of the existing methods while significantly reducing the coding effort. Also proposed are simple methods for obtaining the filtered, smoothed and predictive values for the latent variable. The new methods are implemented using the open source software AD Model Builder, which with its latent variable module (ADMB-RE) facilitates the formulation and fitting of SV models. To illustrate the flexibility of the new algorithms, several univariate and multivariate SV models are fitted using exchange rate and equity data.

Keywords

Empirical Bayes, Laplace approximation, Automatic differentiation; AD Model Builder, Simulated maximum likelihood, Importance sampling

Discipline

Econometrics | Economics

Research Areas

Econometrics

Publication

Computational Statistics and Data Analysis

Volume

76

First Page

642

Last Page

654

ISSN

0167-9473

Identifier

10.1016/j.csda.2013.10.005

Publisher

Elsevier

Copyright Owner and License

Authors

Additional URL

https://doi.org/10.1016/j.csda.2013.10.005

Included in

Econometrics Commons

Share

COinS