Finite-Sample Analysis of Misspecificaton in Simultaneous Equation Models
Publication Type
Journal Article
Publication Date
1980
Abstract
This article examines the effects of misspecification on the exact sampling distributions of the k-class estimators of a single equation in a simultaneous equations model. The analysis focuses on the effects of excluding relevant exogenous variables. The misspecification may occur in either the estimated equation itself or in the other equations in the system. Exact expressions and large-concentration parameter asymptotic expansions are stated and analyzed for the bias and mean squared error (MSE) of the k-class estimators in the case of two included endogenous variables. The results in the article suggest that ordinary least squares (OLS) will often be preferable to two-stage least squares (2SLS) when misspecification is a serious possibility; the relative insensitivity of OLS to specification error outweighs its disadvantage in terms of bias and MSE in the correctly specified case. Further, when relevant exogenous variables are omitted from the estimated equation but not from the system, the entire k class, for nonstochastic k (0 ≤ k ≤ 1), is dominated in terms of asymptotic MSE by either OLS or 2SLS.
Discipline
Econometrics
Research Areas
Econometrics
Publication
Journal of the American Statistical Association
Volume
75
Issue
370
First Page
418
Last Page
427
ISSN
0162-1459
Publisher
Taylor and Francis
Citation
Mariano, Roberto S.; Hale, C.; and Ramage, J. G..
Finite-Sample Analysis of Misspecificaton in Simultaneous Equation Models. (1980). Journal of the American Statistical Association. 75, (370), 418-427.
Available at: https://ink.library.smu.edu.sg/soe_research/157
Additional URL
http://www.jstor.org/stable/2287470