Publication Type
Journal Article
Version
publishedVersion
Publication Date
11-2002
Abstract
The paper presents a technique for computing the individual throughputs and the average queue occupancy when multiple TCP connections share a single bottleneck buffer. The bottleneck buffer is assumed to perform congestion feedback via randomized packet marking or drops. We first present a fixed point-based analytical technique to compute the mean congestion window sizes, the mean queue occupancy and the individual throughputs when the TCP flows perform idealized congestion avoidance. We subsequently extend the technique to analyze the case where TCP flows perform generalized congestion avoidance and demonstrate the use of this technique under the Assured Service model, where each flow is assured a minimum traffic rate. Simulations are used to demonstrate the accuracy of this technique for relatively low values of packet dropping probability and a much wider range of packet marking probability.
Keywords
TCP, Throughput, RED, ECN, Congestion avoidance, Queues
Discipline
Software Engineering
Research Areas
Software and Cyber-Physical Systems
Publication
Computer Networks
Volume
40
Issue
4
First Page
557
Last Page
576
ISSN
1389-1286
Identifier
10.1016/S1389-1286(02)00296-7
Publisher
Elsevier
Citation
MISRA, Archan; OTT, Teunis; and BARAS, John.
Predicting Bottleneck Bandwidth Sharing by Generalized TCP Flows. (2002). Computer Networks. 40, (4), 557-576.
Available at: https://ink.library.smu.edu.sg/sis_research/663
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1016/S1389-1286(02)00296-7