Publication Type
Conference Proceeding Article
Version
submittedVersion
Publication Date
10-2010
Abstract
This paper aims to detect users generating spam reviews or review spammers. We identify several characteristic be- haviors of review spammers and model these behaviors so as to detect the spammers. In particular, we seek to model the following behaviors. First, spammers may target specific products or product groups in order to maximize their im- pact. Second, they tend to deviate from the other reviewers in their ratings of products. We propose scoring methods to measure the degree of spam for each reviewer and apply them on an Amazon review dataset. We then select a sub- set of highly suspicious reviewers for further scrutiny by our user evaluators with the help of a web based spammer eval- uation software specially developed for user evaluation experiments. Our results show that our proposed ranking and supervised methods are e®ective in discovering spammers and outperform other baseline method based on helpfulness votes alone. We finally show that the detected spammers have more significant impact on ratings compared with the unhelpful reviewers.
Keywords
Algorithms, Measurement, Experimentation
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
CIKM '10: Proceedings of the 19th ACM International Conference on Information and Knowledge Management: October 26-30, 2010, Toronto
First Page
939
Last Page
948
ISBN
9781450300995
Identifier
10.1145/1871437.1871557
Publisher
ACM
City or Country
New York
Citation
LIM, Ee Peng; NGUYEN, Viet-An; JINDAL, Nitin; LIU, Bing; and LAUW, Hady Wirawan.
Detecting Product Review Spammers using Rating Behaviors. (2010). CIKM '10: Proceedings of the 19th ACM International Conference on Information and Knowledge Management: October 26-30, 2010, Toronto. 939-948.
Available at: https://ink.library.smu.edu.sg/sis_research/623
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://dx.doi.org/10.1145/1871437.1871557
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons