Practical Inference Control for Data Cubes
Publication Type
Conference Proceeding Article
Publication Date
3-2006
Abstract
The fundamental problem for inference control in data cubes is how to efficiently calculate the lower and upper bounds for each cell value given the aggregations of cell values over multiple dimensions. In this paper, we provide the first practical solution for estimating exact bounds in two-dimensional irregular data cubes (i.e., data cubes in which certain cell values are known to a snooper). Our results imply that the exact bounds cannot be obtained by a direct application of the Fréchet bounds in some cases. We then propose a new approach to improve the classic Fréchet bounds for any high-dimensional data cube in the most general case. The proposed approach improves upon the Fréchet bounds in the sense that it gives bounds that are at least as tight as those computed by Fréchet, yet is simpler in terms of time complexity. Based on our solutions to the fundamental problem, we discuss two security applications, privacy protection of released data and fine-grained access control and auditing.
Discipline
Information Security
Publication
IEEE Symposium on Security and Privacy, 21-24 May, 2006, Berkeley/Oakland, California
First Page
115
Last Page
120
ISBN
9780769525747
Identifier
10.1109/SP.2006.31
Publisher
IEEE
City or Country
Piscataway, NJ
Citation
LI, Yingjiu; LU, Haibing; and DENG, Robert H..
Practical Inference Control for Data Cubes. (2006). IEEE Symposium on Security and Privacy, 21-24 May, 2006, Berkeley/Oakland, California. 115-120.
Available at: https://ink.library.smu.edu.sg/sis_research/597
Additional URL
http://dx.doi.org/10.1109/SP.2006.31