Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
2-2010
Abstract
This paper focuses on the problem of identifying influential users of micro-blogging services. Twitter, one of the most notable micro-blogging services, employs a social-networking model called "following", in which each user can choose who she wants to "follow" to receive tweets from without requiring the latter to give permission first. In a dataset prepared for this study, it is observed that (1) 72.4% of the users in Twitter follow more than 80% of their followers, and (2) 80.5% of the users have 80% of users they are following follow them back. Our study reveals that the presence of "reciprocity" can be explained by phenomenon of homophily. Based on this finding, TwitterRank, an extension of PageRank algorithm, is proposed to measure the influence of users in Twitter. TwitterRank measures the influence taking both the topical similarity between users and the link structure into account. Experimental results show that TwitterRank outperforms the one Twitter currently uses and other related algorithms, including the original PageRank and Topic-sensitive PageRank.
Keywords
Influence, Pagerank, Twitter, Microblogging, Reciprocity
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing | Social Media
Publication
Proceedings of the Third ACM International Conference on Web Search & Data Mining: February 3-6, 2010, New York
First Page
261
Last Page
270
ISBN
9781605588896
Identifier
10.1145/1718487.1718520
Publisher
ACM
City or Country
New York
Citation
WENG, Jianshu; LIM, Ee Peng; JIANG, Jing; and HE, Qi.
Twitterrank: Finding topic-sensitive influential Twitterers. (2010). Proceedings of the Third ACM International Conference on Web Search & Data Mining: February 3-6, 2010, New York. 261-270.
Available at: https://ink.library.smu.edu.sg/sis_research/504
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://doi.org/10.1145/1718487.1718520
Included in
Databases and Information Systems Commons, Numerical Analysis and Scientific Computing Commons, Social Media Commons