Robust Semantic Concept Detection in Large Video Collections

Publication Type

Conference Proceeding Article

Publication Date

10-2009

Abstract

With explosive amounts of video data emerging from the Internet, automatic video concept detection is becoming very important and has been received great attention. However, reported approaches mainly suffer from low identification accuracy and poor robustness over different concepts. One of the main reason is that the existing approaches typically isolate the video signature generation from the process of classifier training. Also, very few approaches consider effects of multiple video features. The paper describes a novel approach fusing different information from diverse knowledge sources to facilitate effective video concept detection. The system is designed based on CM*F scheme and its basic architecture contains two core components including 1) CM*F based video signature generation scheme and 2) CM*F based video concept detector. To evaluate the approach proposed, an extensive experimental study on two large video databases has been carried out. The results demonstrate the superiority of the method in terms of effectiveness and robustness.

Keywords

Detection, Information retrieval, Video concept

Discipline

Databases and Information Systems | Numerical Analysis and Scientific Computing

Publication

SMC 2009: IEEE International Conference on Systems, Man, and Cybernetics, 11-14 October, San Antonio: Proceedings

First Page

635

Last Page

638

ISBN

9781424427932

Identifier

10.1109/ICSMC.2009.5346651

Publisher

IEEE

City or Country

San Antonio, TX

Additional URL

http://dx.doi.org/10.1109/ICSMC.2009.5346651

Share

COinS