Robust Semantic Concept Detection in Large Video Collections
Publication Type
Conference Proceeding Article
Publication Date
10-2009
Abstract
With explosive amounts of video data emerging from the Internet, automatic video concept detection is becoming very important and has been received great attention. However, reported approaches mainly suffer from low identification accuracy and poor robustness over different concepts. One of the main reason is that the existing approaches typically isolate the video signature generation from the process of classifier training. Also, very few approaches consider effects of multiple video features. The paper describes a novel approach fusing different information from diverse knowledge sources to facilitate effective video concept detection. The system is designed based on CM*F scheme and its basic architecture contains two core components including 1) CM*F based video signature generation scheme and 2) CM*F based video concept detector. To evaluate the approach proposed, an extensive experimental study on two large video databases has been carried out. The results demonstrate the superiority of the method in terms of effectiveness and robustness.
Keywords
Detection, Information retrieval, Video concept
Discipline
Databases and Information Systems | Numerical Analysis and Scientific Computing
Publication
SMC 2009: IEEE International Conference on Systems, Man, and Cybernetics, 11-14 October, San Antonio: Proceedings
First Page
635
Last Page
638
ISBN
9781424427932
Identifier
10.1109/ICSMC.2009.5346651
Publisher
IEEE
City or Country
San Antonio, TX
Citation
SHEN, Jialie; Tao, Dacheng; and LI, Xuelong.
Robust Semantic Concept Detection in Large Video Collections. (2009). SMC 2009: IEEE International Conference on Systems, Man, and Cybernetics, 11-14 October, San Antonio: Proceedings. 635-638.
Available at: https://ink.library.smu.edu.sg/sis_research/487
Additional URL
http://dx.doi.org/10.1109/ICSMC.2009.5346651