Interactive visual analytics application for spatiotemporal movement data

Yifei GUAN, Singapore Management University
Tin Seong KAM, Singapore Management University

Abstract

The Visual Analytics Science and Technology (VAST) Challenge 2017 Mini-Challenge 1 dataset mirrored the challenging scenarios in analysing large spatiotemporal movement tracking datasets. The datasets provided contains a 13-month movement data generated by five types of sensors, for six types of vehicles passing through the Boonsong Lekagul Nature Preserve. We present an application developed with the market leading visualisation software Tableau to provide an interactive visual analysis of the multi-dimensional spatiotemporal datasets. Our interactive application allows the user to perform an interactive analysis to observe movement patterns, study vehicle trajectories and identify movement anomalies while allowing them to customise the preferred visualisation configurations.