Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
6-2016
Abstract
In practice, some bugs have more impact than others and thus deserve more immediate attention. Due to tight schedule and limited human resource, developers may not have enough time to inspect all bugs. Thus, they often concentrate on bugs that are highly impactful. In the literature, high impact bugs are used to refer to the bugs which appear in unexpected time or locations and bring more unexpected effects, or break pre-existing functionalities and destroy the user experience. Unfortunately, identifying high impact bugs from the thousands of bug reports in a bug tracking system is not an easy feat. Thus, an automated technique that can identify high-impact bug reports can help developers to be aware of them early, rectify them quickly, and minimize the damages they cause. Considering that only a small proportion of bugs are high impact bugs, the identification of high impact bug reports is a difficult task. In this paper, we propose an approach to identify high impact bug reports by leveraging imbalanced learning strategies. We investigate the effectiveness of various imbalanced learning strategies built upon a number of well-known classification algorithms. In particular, we choose four widely used strategies for dealing with imbalanced data and use naive Bayes multinominal as the classification algorithm to conduct experiments on four datasets from four different open source projects. We perform an empirical study on a specific type of high impact bugs, i.e., surprise bugs, which were first studied by Shihab et al. The results show that under-sampling is the best imbalanced learning strategy with naive Bayes multinominal for high impact bug identification.
Keywords
High Impact Bug, Imbalanced Data, Text Classification
Discipline
Computer Sciences | Software Engineering
Research Areas
Data Science and Engineering
Publication
COMPSAC 2016: Proceedings of the 40th IEEE Annual International Computers, Software and Applications Conference, Atlanta, Georgia, 10-14 June 2016
First Page
227
Last Page
232
ISBN
9781467388450
Identifier
10.1109/COMPSAC.2016.67
Publisher
IEEE Computer Society
City or Country
Los Alamitos, CA
Citation
YANG, Xinli; David LO; HUANG, Qiao; XIA, Xin; and SUN, Jianling.
Automated identification of high impact bug reports leveraging imbalanced learning strategies. (2016). COMPSAC 2016: Proceedings of the 40th IEEE Annual International Computers, Software and Applications Conference, Atlanta, Georgia, 10-14 June 2016. 227-232.
Available at: https://ink.library.smu.edu.sg/sis_research/3567
Copyright Owner and License
Authors
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1109/COMPSAC.2016.67