Deriving Private Information from Perturbed Data using IQR Based Approach
Publication Type
Conference Proceeding Article
Publication Date
4-2006
Abstract
Several randomized techniques have been proposed for privacy preserving data mining of continuous data. These approaches generally attempt to hide the sensitive data by randomly modifying the data values using some additive noise and aim to reconstruct the original distribution closely at an aggregate level. However, one challenge here is whether the reconstructed distribution can be exploited by attackers or snoopers to derive sensitive individual data. This paper presents one simple attack using Inter-Quantile Range on reconstructed distribution. The experimental results show that current random perturbation-based privacy preserving data mining techniques may need a careful scrutiny in order to prevent privacy breaches through this model based inference.
Discipline
Information Security
Research Areas
Information Security and Trust
Publication
ICDE '06: Proceedings: 22nd International Conference on Data Engineering Workshops, 3-7 April, 2006, Atlanta, Georgia
First Page
92
ISBN
9780769525716
Identifier
10.1109/ICDEW.2006.47
Publisher
IEEE
City or Country
Atlanta, GA
Citation
GUO, Songtao; WU, Xintao; and LI, Yingjiu.
Deriving Private Information from Perturbed Data using IQR Based Approach. (2006). ICDE '06: Proceedings: 22nd International Conference on Data Engineering Workshops, 3-7 April, 2006, Atlanta, Georgia. 92.
Available at: https://ink.library.smu.edu.sg/sis_research/321
Additional URL
http://dx.doi.org/10.1109/ICDEW.2006.47