Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
5-2015
Abstract
We propose the problem of predicting a bundle of goods, where the goods considered is a set of spatial locations that an agent wishes to visit. This typically arises in the tourism setting where attractions can often be bundled and sold as a package to visitors. While the problem of predicting future locations given the current and past trajectories is well-established, we take a radical approach by looking at it from an economic point of view. We view an agent's past trajectories as revealed preference (RP) data, where the choice of locations is a solution to an optimisation problem according to some unknown utility function and subject to the prevailing prices and budget constraint. We approximate the prices and budget constraint as the time costs to finish visiting the chosen locations. We leverage on a recent line of work that has established algorithms to efficiently learn from RP data (i.e., recover the utility functions) and make predictions of future purchasing behaviours. We adopt and adapt those work to our original setting while incorporating techniques from spatiotemporal analysis. We experiment with real-world trajectory data collected from a theme park. Our predictions show improved accuracies in comparison with the baseline methods by at least 20, one of which comes from the spatiotemporal analysis domain.
Discipline
Artificial Intelligence and Robotics | Operations Research, Systems Engineering and Industrial Engineering
Publication
AAMAS '15: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems, May 4-8, 2015, Istanbul, Turkey
First Page
1121
Last Page
1129
ISBN
9781450334136
Publisher
IFAAMS
City or Country
Richland, SC
Citation
LE, Truc Viet; LIU, Siyuan; LAU, Hoong Chuin; and KRISHNAN, Ramayya.
Predicting bundles of spatial locations from learning revealed preference data. (2015). AAMAS '15: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems, May 4-8, 2015, Istanbul, Turkey. 1121-1129.
Available at: https://ink.library.smu.edu.sg/sis_research/3182
Copyright Owner and License
LARC
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
http://www.aamas2015.com/en/AAMAS_2015_USB/aamas/p1121.pdf
Included in
Artificial Intelligence and Robotics Commons, Operations Research, Systems Engineering and Industrial Engineering Commons