Publication Type
Conference Proceeding Article
Version
publishedVersion
Publication Date
11-2015
Abstract
Location-Based Social Networks (LBSN) such as Foursquare allow users to indicate venue visits via check-ins. This results in much fine grained context-rich data, useful for studying user mobility. In this work, we use check-ins to characterize trips and visitors to two cities, where visitors are defined as having their home cities elsewhere. First, we divide trips into two duration types: long and short. We then show that trip types differ in check-in distributions over venue categories, time slots, as well as check-in intensity. Based on the trip types, we then divide visitors into long-term and short-term visitors. We compare visitor types in terms of popularities of check-in venues and proximities to friends' check-ins. Our findings indicate that short-term visitors are more biased towards popular venues. As for proximity to friends' check-ins, the effect is more consistently observed for long-term visitors. These findings also illustrate that locations of incoming visitors can effectively be analyzed using LBSN data in addition to conducting user surveys which are relatively costlier.
Lastly, we investigate the importance of visitor type information in models for venue prediction. We apply models including a state of the art kernel density estimation technique and ranking based on venue popularity. For each model, we consider two settings where visitor type information is absent/present. For long-term visitors, we observed little differences in accuracies. However, for short-term visitors, predictions are significantly more accurate by using type information. These findings suggest that venue prediction or recommender systems should consider visitor type to improve accuracy.
Keywords
Check-in, Foursquare, Long-term, Visitors, Short-term
Discipline
Computer Sciences | Databases and Information Systems
Research Areas
Data Science and Engineering
Publication
COSN '15: Proceedings of the 2015 ACM on Conference on Online Social Networks: November 2-3, Stanford, CA
First Page
173
Last Page
184
ISBN
9781450339513
Identifier
10.1145/2817946.2817958
Publisher
ACM
City or Country
New York
Citation
CHONG, Wen Haw; DAI, Bingtian; and LIM, Ee Peng.
Not all trips are equal: Analyzing foursquare check-ins of trips and city visitors. (2015). COSN '15: Proceedings of the 2015 ACM on Conference on Online Social Networks: November 2-3, Stanford, CA. 173-184.
Available at: https://ink.library.smu.edu.sg/sis_research/3104
Copyright Owner and License
Publisher
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Additional URL
https://doi.org/10.1145/2817946.2817958